§3.4 limits at Infinity.
Key pohte: (1) horizomal/Vartical asymptotes; $\lim _{x \rightarrow \pm \pm \infty} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$
(2) $\frac{1}{0^{ \pm}}= \pm \infty, \frac{1}{ \pm \infty}=0, \infty^{\text {posittre pruer }}=\infty, \infty^{\text {regative puer }}=0$.
(3) Highest term (leading term) muk for $\lim _{x \rightarrow \pm \infty}$

- If: $\lim _{\substack{x \rightarrow \infty \\(x \rightarrow-\infty)}} f(x)=L$ means as x approaches infinity (as x gets arbittranily large)
(posture ornegeth)
(tes ar approaches L

If α is finite, $y=\alpha$ is called a horizontel asymptete of $y=f(x)$.
arall: If $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty, x=a$ is called a vertacal cosymptote of $y=f(x)$. (Sec 1.5, lec mexe meek 1, page 5).

- $x \rightarrow \infty$ an be trieated as "finter numbers". folloning the rules belaw:
(1) $\lim _{x \rightarrow+\infty} \frac{1}{x}=0 \Leftrightarrow " \frac{1}{ \pm+\infty}=0^{\prime \prime}$. In s.5, we lde $\lim _{x \rightarrow 0^{+}} \frac{1}{x}= \pm \infty \Leftrightarrow " \frac{1}{0^{ \pm}}= \pm \infty^{\prime \prime}$.
(2) (prsateve pereer approades ∞ as x approcches ∞ : $\lim _{x \rightarrow \infty} \sqrt{x}=\infty, \lim _{x \rightarrow \infty} x=\infty, \lim _{x \rightarrow \infty} x^{\frac{3}{2}}=\infty, \lim _{x \rightarrow \infty} x^{2}=\infty$

eq1. $y=3+\frac{2}{x-1} \cdot \lim _{x \rightarrow \pm \infty} 3+\frac{2}{x-1}=3+\frac{2}{ \pm \infty}=3$

$$
(\sec 1.5 \Rightarrow) \lim _{x \rightarrow 1^{+}} 3+\frac{2}{x-1}=\infty, \lim _{x \rightarrow 1^{-}} 3+\frac{2}{x-1}=-\infty
$$

$y=3$ is a herizented asympttete and $x=1$ is a varicicel asymptote.

Remank: $\frac{\infty}{\infty}$ or $\infty-\infty$ is indeterminate, we have to do sime algebra danges first.

- Highest tarn (leachry term) rule: In order to evaluate the limats for a latilo of paer furuems, we only need to leep the tighest order terms in the numerator and the denomenator and DROP ALL THE LOWER ORDER TERMS.
eg.2. $\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{3+2 x+5 x^{2}}=\lim _{x \rightarrow \infty} \frac{-3 x^{2}}{5 x^{2}}=\lim _{x \rightarrow \infty} \frac{-3}{5}=-\frac{3}{5} . y=-\frac{3}{5}$ harizant cosymptete. Remonk: $-3 x^{2}$ is the lighest temn in the numentor; $5 x^{2}$ is the lighest tem in the denomenetor.
eg.3. (Mare examples abues tighest tom mule).

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\frac{-7 x+\sqrt{x}}{x^{3}+2 x}=\lim _{x \rightarrow-\infty} \frac{-7 x}{x^{3}}=\lim _{x \rightarrow \infty} \frac{7}{x^{2}}=\left(\frac{-7}{\infty}\right)=0}{\text { - } \lim _{x \rightarrow \infty} \frac{2+3 \cdot x^{\frac{3}{2}}}{1-\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{3 \cdot x^{\frac{3}{2}}}{-x^{\frac{1}{2}}}=\lim _{x \rightarrow \infty}-3 \cdot x^{1}=-\infty . \quad \text { Punelk: } \frac{x^{a}}{x^{b}}=x^{a b b}=\frac{1}{x^{b-a}}}
\end{aligned}
$$

- $\lim _{x \rightarrow \infty} \frac{5 x}{3-2 x}=\lim _{x \rightarrow \infty} \frac{5 x}{-2 x}=-\frac{5}{2} . \quad y=-\frac{5}{2}$ is the harizntal asymptte.

Remark: Aighest order mule is only applied to $x \rightarrow \infty$.

$$
\lim _{x \rightarrow\left(\frac{3}{2}\right)^{+}} \frac{5 x}{3-2 x} \stackrel{\text { prect phgin }}{=} \frac{5 \cdot \frac{3}{2}}{3-2 \cdot \frac{3}{2}}=\frac{\text { finite number }}{0^{-}}=-\infty
$$ asymptete

Renark: Hohest onder ruke lus followng
product fam. $\uparrow \quad \begin{aligned} & \text { negative sigh canes from } x \rightarrow\left(\frac{3}{2}\right)^{\dagger} \\ & \Rightarrow 3-2 x<0 .\end{aligned}$
$\lim _{x \rightarrow \infty} \frac{(2-6 x) \cdot\left(x^{2}+1\right)}{(3 x+1) \cdot\left(2 x^{2}-x\right)}=\lim _{x \rightarrow \infty} \frac{(-6 x) \cdot x^{2}}{3 x \cdot 2 x^{2}}$. Pick the hphest tamn in each bracket.

$$
=\lim _{x \rightarrow \infty} \frac{-6 x^{3}}{6 x^{3}}=-1
$$

A Anark: The formal argament for hoghest temn me: Iull ant the highest onder tems. og. 4 (Ax prove ege 2).

$$
\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{3+2 x+5 x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{2} \cdot\left(\frac{2}{x^{2}}-3\right)}{x^{2} \cdot\left(\frac{3}{x^{2}}+\frac{2 x}{x^{2}}+5\right)}=\frac{0-3}{0+0+5}=-\frac{3}{5}
$$

Hints for WW.

$$
\begin{aligned}
& \text { 7x7: Congugation for root: } \frac{\lim _{x \rightarrow \infty} \sqrt{x^{2}+3 x}-x=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x}-x\right) \cdot(\sqrt{(\sqrt{x}+3 x}+x)}{\sqrt{x^{2}+3 x}+x}=\lim _{x \rightarrow \infty} \frac{x^{2}+3 x-x^{2}}{\sqrt{x^{2}+3 x}+x}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \sqrt{4 x+1}-4 x=\lim _{x \rightarrow \infty} \frac{(\sqrt{4 x+1}-4 x)(\sqrt{4 x+1}+4 x)}{\sqrt{4 x+1}+4 x} \\
& =\lim _{x \rightarrow \infty} \frac{4 x+1-16 x^{2}}{\sqrt{4 x+1}+4 x}=\lim _{x \rightarrow \infty} \frac{-16 x^{2}}{4 x} \\
& =\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{x^{2}}+x} \quad \begin{array}{l}
\text { niguse oncer } \\
\text { mate for } \\
x^{2}+3 x .
\end{array} \\
& =\lim _{x \rightarrow \infty} \frac{3 x}{x+x}=\frac{3}{2} \text {. } \\
& =\lim _{x \rightarrow \infty}-4 x=-\infty .
\end{aligned}
$$

**8. (squecze theotem s 1.6)

$$
\frac{1+x}{x} \leqslant \frac{\sin x+x}{x} \leqslant \frac{1+x}{x} \sin x-1-\sin x \leqslant 1 . \lim _{x \rightarrow \infty} \frac{1+x}{x}=1, \lim _{x \rightarrow \infty} \frac{-1+x}{x}=1 \Rightarrow \lim _{x \rightarrow \infty} \frac{\sin x+x}{x}=1 .
$$

53.5. Curve Sketching
key pants: (1) Polynomial long division
(3) Slant asymptote for rational functions.
(3) (Carve sketching). Combination of $3,3,3.4,3.5$.
eg. 0 . Divide 17 by 5 , we have $17=3.5+2$

- Dive $x^{2}+2 x-4$ by $x-1, \quad x^{2}+2 x-4=q(x) \cdot(x-1)+r(x) \frac{515}{2}$ remainder. Fond the quotient $q(x)$ and remainder $r(x)$ by polynomial long division. $x-1 \frac{x+3}{x^{2}+2 x-4} \leftrightarrows q(x)$ i.e.

$$
\frac{\frac{x^{2}-x}{3 x-4}}{\frac{3 x-3}{-1}-f(x)}
$$

$$
x^{2}+2 x-4=(x+3) \cdot(x-1)-1
$$

- Consider the ratio $\frac{17}{5}=\frac{3.5+2}{5}=3+\frac{2}{5}$
- Consider the ratio of polynomials: $\frac{x^{2}+2 x-4}{x-1}=\frac{(x+3) \cdot(x-1)-1}{x-1}=x+3-\frac{1}{x-1}$
(Rational functions)
- Slant asymptote: If $f(x)$ approaches a line $y=m \cdot x+b$ as x approaches infinity, then $y=m x+b$ is the SLANT ASYMPTOTE of $f(x)$.
eg 1: $f(x)=\frac{x^{2}+2 x-4}{x-1}=x+3-\frac{1}{x-1}$. $f(x)$ approaches $y=x+3$ as $x \rightarrow \infty$ since $f f(x)-(x+3)=-\frac{1}{x-1} \rightarrow 0$ as $x \rightarrow \infty$. ie. $y=x+3$ is the slant asymptote of $f(x)$.
- Conclusion: If a rational function can be written as $f(x)=m \cdot x+b+\frac{r(x)}{d(x)}$ via polynomial bung diusion, then $y=m x+b$ is the slant asymptote of $y=f(x)$.
eg .2. Let $f(x)=\frac{4 x^{2}}{2 x-5}$. Rind all de asymptotes (vertica/horizontal/sant) of $f(x)$.
Vortical: $x=\frac{5}{2}$ since $\lim _{x \rightarrow\left(\frac{5}{2}\right)^{+}} \frac{4 x^{2}}{2 x-5}=\infty$. (or $\left.\lim _{x \rightarrow\left(\frac{5}{2}\right)^{-}} \frac{4 x^{2}}{2 x-5}=-\infty\right)$.
Sbrizental: None. $\lim _{x \rightarrow \pm \infty} \frac{4 x^{2}}{2 x-5}$ livest tam $\lim _{x \rightarrow \pm \infty} \frac{4 x^{2}}{2 x}=\lim _{x \rightarrow+\infty} 2 x= \pm \infty$ (Not finite)
 since $\frac{4 x^{2}}{2 x-5}=2 x+5+\frac{25}{2 x-5}$.

$$
\frac{\frac{40 x+0}{10 x+25}}{25} \quad \frac{4 x^{2}}{2 x-5}=\underbrace{2 x+5}_{\text {dart assmp }}+\frac{25}{2 x-5}
$$

ag 3. (wave Sketching: Combination of $3.3-3.5$, fib).
sketch to graph of $y=f(x)$ such out

- f is corimuas and has SLANT asymptote $y=x$
- f $f^{\prime}>0$ for $x \in(-\infty,-1) \cup(3,+\infty), f^{\prime}<0$ for $x \in(-1,3)$

- Local maximum of f occurs at $x=-1$.
- Local minimum of f occurs at $x=3$
- Inflection pouts of f are $x=-3, x=1$
(The answer is rot unique) All the follang three ave qualified answers.
 $\underset{x}{f^{\prime}+\underset{3}{t}+}$
 $\underbrace{f^{\prime \prime}+\ldots}_{-3}+1$
 (f 16).
(a). f is an odd function whose graph is symmetric watch respect to the origin

Reasion: $f(-x)=\frac{-x}{(-x)^{2}+1}=-\left[\frac{x}{x^{2}+1}\right]=-f(x)$. Remark: f is even if $f(-x)=f(x)$
(b). Interval of incteresig/decreasng and local extremums. f is odd if $f(-x)=-f(x)$.

$$
f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{(1-x)(1+x)}{\left(x^{2}+1\right)^{2}}=0 \Rightarrow x=-1,1 \text { (two critical ports) }
$$

(defined for
all $x>\quad-1,1$ divide $(-\infty,+\infty)$ into
Increasing: $H, 1$ where $f^{\prime}>0$
Decreeing: $(-\infty)-1] \cup 11++\infty)$ where $f^{\prime}<0$ local maximum ockers at $x=1$, local minimum oclears at $x=-1$.
(c). Concavity: $f^{\prime \prime}(x)=\frac{2 x \cdot\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}=\frac{2 x \cdot(x+\sqrt{3}) \cdot(x-\sqrt{3})}{\left(x^{2}+1\right)^{3}}=0$

Hints for ww b. $f(x)=\frac{x^{3}}{x^{2}-9}, f^{\prime}(x)=\frac{x^{4}-27 x^{2}}{\left(x^{2}-9\right)^{2}}, f^{\prime \prime}(x)=\frac{18 x \cdot\left(x^{2}+27\right)}{\left(x^{2}-9\right)^{3}}$
(You can sack help from Wolframlalither for the expression of $f^{\prime \prime}$).

Increase $y:(-\infty,-\sqrt{2}]] \cup(\sqrt{2},+\infty)$
Decrease: $[-\sqrt{2} 7,-3) \cup(-3,3) \cup(3, \sqrt{2}]]$
Run: $-3,3$ are not in the domain.

Concave up: $(-3,0) \cup(3,+\infty)$
Concave down: $(-\infty,-3) \cup(0,3)$
Inflection: $x=0 .(x= \pm 3$ not in the domain $)$

* ag Analyze $f(x)=2 x-3 \cdot x^{\frac{2}{3}}$ (velated to aw 5) .
(1) Donain of $f:(-\infty, \infty) \Rightarrow$. f has no vertical asymptete
(2) f has no horizontal asymptote since $\lim _{x \rightarrow+\infty} 2 x-3 \cdot x^{\frac{2}{3}}=\lim _{x \rightarrow+\infty} x\left[2-\frac{3}{x^{\frac{1}{3}}}\right]$
(3) $f^{\prime}(x)=\left(2 x-3 \cdot x^{\frac{2}{3}}\right)^{\prime}=2-2 \cdot x^{-\frac{1}{3}}$

$$
= \pm \infty \cdot(2-0)= \pm \infty
$$

(4) Critical pohts of $f:\left(\right.$ Hint: critical phets $\Leftrightarrow f^{\prime} D \cdot N \cdot E$ or $\left.f^{\prime}=0\right)$.
$f(x)=2-\frac{2}{x^{\frac{1}{3}}}$ D.N.E \Leftrightarrow Denowinter is zeto $\Leftrightarrow x^{\frac{1}{3}}=0 \Rightarrow x=0$.

$$
f^{\prime}(x)=2-\frac{2}{x^{\frac{1}{3}}}=0 \Rightarrow 2=\frac{2}{x^{\frac{1}{3}}} \Rightarrow x^{\frac{1}{3}}=1 \Rightarrow x=1 .
$$

Gitial poits are $x=0$ and $x=1$
(5) Increang / Deareary Intorvals: (determined by the sighs of f^{\prime}). critical pants 0.1 dovide $(-\infty, \infty)$ into

$$
\begin{array}{llll}
x<0, & f^{\prime}(x)>0 & \left(f^{\prime}(-)=4>0\right) & f^{\prime}+++ \\
x<0 & 0<x<1 & x>1 \\
0<x<1, & 0<x^{\frac{1}{3}}<1 \Rightarrow & 2-\frac{2}{x^{\frac{1}{3}}<0,} \quad f^{\prime}<0 \\
x>1, & x^{\frac{1}{3}}>1 \Rightarrow 2-\frac{2}{x^{3}}>0, & f^{\prime}>0 .
\end{array}
$$

Increasing Incorval(s): $(-\infty, 0) \cup(1,+\infty)$. Dereasing Intend $(s)=[0,1]$
(b) Local moximum: attained at $x=0 \quad$ (maluary \rightarrow decriessy $\cap)$ local minimum: attained at $x=1 \quad$ (decrearing \rightarrow increasing \vee
(7) Concarity and inflecion phes: $f^{\prime \prime}(x)=\left(2-2 \cdot x^{-\frac{1}{3}}\right)^{\prime}=0-2 \cdot\left(-\frac{1}{3}\right) x^{-\frac{2}{3}}=\frac{2}{3} \cdot x^{-\frac{2}{3}}$ Noare the $f^{\prime \prime}=\frac{2}{3} \cdot \frac{1}{\left(x^{\frac{1}{3}}\right)^{2}}$ is forverer pasitave except 0 since $\boldsymbol{x}^{2}>0$ f is concalve up on $(-\infty, 0) \cup(0,+\infty)$ and concave down nowhere. and no inflecton points.

